Saturday, January 11, 2014

Black-body radiation quantization

Radiation quantization

Black-body radiation, the emission of electromagnetic energy due to an object's heat, could not be explained from classical arguments alone. The equipartition theorem of classical mechanics, the basis of all classical thermodynamic theories, stated that an object's energy is partitioned equally among the object's vibrational modes. This worked well when describing thermal objects, whose vibrational modes were defined as the speeds of their constituent atoms, and the speed distribution derived from egalitarian partitioning of these vibrational modes closely matched experimental results. Speeds much higher than the average speed were suppressed by the fact that kinetic energy is quadratic—doubling the speed requires four times the energy—thus the number of atoms occupying high energy modes (high speeds) quickly drops off because the constant, equal partition can excite successively fewer atoms. Low speed modes would ostensibly dominate the distribution, since low speed modes would require ever less energy, and prima facie a zero-speed mode would require zero energy and its energy partition would contain an infinite number of atoms. But this would only occur in the absence of atomic interaction; when collisions are allowed, the low speed modes are immediately suppressed by jostling from the higher energy atoms, exciting them to higher energy modes. An equilibrium is swiftly reached where most atoms occupy a speed proportional to the temperature of the object (thus defining temperature as the average kinetic energy of the object).
But applying the same reasoning to the electromagnetic emission of such a thermal object was not so successful. It had been long known that thermal objects emit light. Hot metal glows red, and upon further heating, white (this is the underlying principle of the incandescent bulb). Since light was known to be waves of electromagnetism, physicists hoped to describe this emission via classical laws. This became known as the black body problem. Since the equipartition theorem worked so well in describing the vibrational modes of the thermal object itself, it was trivial to assume that it would perform equally well in describing the radiative emission of such objects. But a problem quickly arose when determining the vibrational modes of light. To simplify the problem (by limiting the vibrational modes) a longest allowable wavelength was defined by placing the thermal object in a cavity. Any electromagnetic mode at equilibrium (i.e. any standing wave) could only exist if it used the walls of the cavities as nodes. Thus there were no waves/modes with a wavelength larger than twice the length (L) of the cavity.
Standing waves in a cavity
The first few allowable modes would therefore have wavelengths of : 2L, L, 2L/3, L/2, etc. (each successive wavelength adding one node to the wave). However, while the wavelength could never exceed 2L, there was no such limit on decreasing the wavelength, and adding nodes to reduce the wavelength could proceed ad infinitum. Suddenly it became apparent that the short wavelength modes completely dominated the distribution, since ever shorter wavelength modes could be crammed into the cavity. If each mode received an equal partition of energy, the short wavelength modes would consume all the energy. This became clear when plotting the Rayleigh–Jeans law which, while correctly predicting the intensity of long wavelength emissions, predicted infinite total energy as the intensity diverges to infinity for short wavelengths. This became known as the ultraviolet catastrophe.
The solution arrived in 1900 when Max Planck hypothesized that the frequency of light emitted by the black body depended on the frequency of the oscillator that emitted it, and the energy of these oscillators increased linearly with frequency (according to his constant h, where E = hν). This was not an unsound proposal considering that macroscopic oscillators operate similarly: when studying five simple harmonic oscillators of equal amplitude but different frequency, the oscillator with the highest frequency possesses the highest energy (though this relationship is not linear like Planck's). By demanding that high-frequency light must be emitted by an oscillator of equal frequency, and further requiring that this oscillator occupy higher energy than one of a lesser frequency, Planck avoided any catastrophe; giving an equal partition to high-frequency oscillators produced successively fewer oscillators and less emitted light. And as in the Maxwell–Boltzmann distribution, the low-frequency, low-energy oscillators were suppressed by the onslaught of thermal jiggling from higher energy oscillators, which necessarily increased their energy and frequency.
The most revolutionary aspect of Planck's treatment of the black body is that it inherently relies on an integer number of oscillators in thermal equilibrium with the electromagnetic field. These oscillators give their entire energy to the electromagnetic field, creating a quantum of light, as often as they are excited by the electromagnetic field, absorbing a quantum of light and beginning to oscillate at the corresponding frequency. Planck had intentionally created an atomic theory of the black body, but had unintentionally generated an atomic theory of light, where the black body never generates quanta of light at a given frequency with an energy less than . However, once realizing that he had quantized the electromagnetic field, he denounced particles of light as a limitation of his approximation, not a property of reality.

Photoelectric effect illuminated[edit]

Yet while Planck had solved the ultraviolet catastrophe by using atoms and a quantized electromagnetic field, most physicists immediately agreed that Planck's "light quanta" were unavoidable flaws in his model. A more complete derivation of black body radiation would produce a fully continuous, fully wave-like electromagnetic field with no quantization. However, in 1905 Albert Einstein took Planck's black body model in itself and saw a wonderful solution to another outstanding problem of the day: the photoelectric effect. Ever since the discovery of electrons eight years previously, electrons had been the thing to study in physics laboratories worldwide.
In 1902 Philipp Lenard discovered that (within the range of the experimental parameters he was using) the energy of these ejected electrons did not depend on the intensity of the incoming light, but on its frequency. So if one shines a little low-frequency light upon a metal, a few low energy electrons are ejected. If one now shines a very intense beam of low-frequency light upon the same metal, a whole slew of electrons are ejected; however they possess the same low energy, there are merely more of them. In order to get high energy electrons, one must illuminate the metal with high-frequency light. The more light there is, the more electrons are ejected. Like blackbody radiation, this was at odds with a theory invoking continuous transfer of energy between radiation and matter. However, it can still be explained using a fully classical description of light, as long as matter is quantum mechanical in nature.[6]
If one used Planck's energy quanta, and demanded that electromagnetic radiation at a given frequency could only transfer energy to matter in integer multiples of an energy quantum , then the photoelectric effect could be explained very simply. Low-frequency light only ejects low-energy electrons because each electron is excited by the absorption of a single photon. Increasing the intensity of the low-frequency light (increasing the number of photons) only increases the number of excited electrons, not their energy, because the energy of each photon remains low. Only by increasing the frequency of the light, and thus increasing the energy of the photons, can one eject electrons with higher energy. Thus, using Planck's constant h to determine the energy of the photons based upon their frequency, the energy of ejected electrons should also increase linearly with frequency; the gradient of the line being Planck's constant. These results were not confirmed until 1915, when Robert Andrews Millikan, who had previously determined the charge of the electron, produced experimental results in perfect accord with Einstein's predictions. While the energy of ejected electrons reflected Planck's constant, the existence of photons was not explicitly proven until the discovery of the photon antibunching effect, of which a modern experiment can be performed in undergraduate-level labs.[7] This phenomenon could only be explained via photons, and not through any semi-classical theory (which could alternatively explain the photoelectric effect). When Einstein received his Nobel Prize in 1921, it was not for his more difficult and mathematically laborious special and general relativity, but for the simple, yet totally revolutionary, suggestion of quantized light. Einstein's "light quanta" would not be called photons until 1925, but even in 1905 they represented the quintessential example of wave–particle duality. Electromagnetic radiation propagates following linear wave equations, but can only be emitted or absorbed as discrete elements, thus acting as a wave and a particle simultaneously.

http://en.wikipedia.org/wiki/Wave%E2%80%93particle_duality

No comments:

Post a Comment